Refine Your Search

Topic

Author

Search Results

Technical Paper

Simulation of rear end impact with a full body human model with a detailed neck: Role of passive muscle properties and initial seating posture

2001-06-04
2001-06-0224
To study the mechanics of the neck during rear end impact, in this paper an existing global human body model and an existing detailed submodel of the neck were combined into a new model. The combined model is validated with responses of volunteers and post mortem human subjects (PMHSs) subjected to rear end impacts of resp 5g and 12g. The volunteers (n=7, 7 tests) were seated on a standard car seat with head restraint, while the PMHSs (n=3, 6 tests) were placed on a rigid seat without head restraint. The model shows good agreement with the PMHS responses when muscle tensile stiffness is increased towards published PMHS tissue properties. For the volunteer simulations, initial seating posture and head restraint position were found to strongly influence the model response. More leaning forward (increasing of horizontal distance head head restraint) results in larger T1 and head motions.
Technical Paper

On a Model-Based Control of a Three-Way Catalytic Converter

2001-03-05
2001-01-0937
Though very important for the system performance, the dynamic behavior of the catalytic converter has mainly been neglected in the design of exhaust emission control systems. Since the major dynamic effects stem from the oxygen storage capabilities of the catalytic converter, a novel model-based control scheme, with the explicit control of the converter's oxygen storage level is proposed. The controlled variable cannot be measured, so it has to be predicted by an on-line running model (inferential sensor). The model accuracy and adaptability are therefore crucial. A simple algorithm for the model parameter identification is developed. All tests are performed on a previously developed first principle model of the catalytic converter so that the controller effectiveness and performance can clearly be observed.
Technical Paper

The Large Shear Strain Dynamic Behavior of In-Vitro Porcine Brain Tissue and a Silicone Gel Model Material

2000-11-01
2000-01-SC17
The large strain dynamic behavior of brain tissue and silicone gel, a brain substitute material used in mechanical head models, was compared. The non-linear shear strain behavior was characterized using stress relaxation experiments. Brain tissue showed significant shear softening for strains above 1% (approximately 30% softening for shear strains up to 20%) while the time relaxation behavior was nearly strain independent. Silicone gel behaved as a linear viscoelastic solid for all strains tested (up to 50%) and frequencies up to 461 Hz. As a result, the large strain time dependent behavior of both materials could be derived for frequencies up to 1000 Hz from small strain oscillatory experiments and application of Time Temperature Superpositioning. It was concluded that silicone gel material parameters are in the same range as those of brain tissue.
Technical Paper

Modeling of an Automotive Exhaust Gas Converter at Low Temperatures Aiming at Control Application

1999-10-25
1999-01-3623
The LEV/ULEV emission standards pose challenging problems on automotive exhaust gas treatment. This increases the need for good catalytic converter models, which can be applied for control. A dynamic converter model was made on the basis of first principles, accounting for the accumulation of mass in the bulk gas phase, in pores of the washcoat and on the catalytic surface, as well as for the energy accumulation in the gas and solid phase. The basis for the model is the elementary step kinetics of the individual global reactions. The main purpose of the model is to describe the low temperature behavior of the converter, when the majority of the emissions occur. The light-off process is analyzed in detail with different inputs. The biggest improvement occurs when secondary air is injected in front of the converter. The converter model is also coupled with a simple SI engine model to investigate the dynamic behavior of the whole system.
Technical Paper

A Three-Dimensional Head-Neck Model: Validation for Frontal and Lateral Impacts

1994-11-01
942211
The three-dimensional head-neck model of Deng and Goldsmith (J. Biomech., 1987) was adapted and implemented in the integrated multibody/finite element code MADYMO. The model comprises rigid head and vertebrae, connected by linear viscoelastic intervertebral joints and nonlinear elastic muscle elements. It was elaborately validated by comparing model responses with the responses of human volunteers subjected to frontal and lateral sled acceleration impacts. Fair agreement was found for both impacts. Further, a sensitivity analysis was performed to assess the effect of parameter variations on model response. The model proved satisfactory and may be used as a tool to improve restraint systems or dummy necks.
Technical Paper

LDA Measurements of Steady and Unsteady Flow Through the Induction System of a Heavy Duty Diesel Engine

1990-09-01
901576
LDA technique was used to investigate valve exit flow and in-cylinder flow generated by a directed intake port of a heavy duty Diesel engine under steady and unsteady conditions. The results obtained under both steady and unsteady show the flow patterns is very sensitive to the valve lift with this type of intake port. At small valve lift, flow profile around the valve periphery is relatively uniform, the corresponding in-cylinder flow is characteristic of double vortex. With valve lift increasing, the separating region appears near the valve seat in part of the valve periphery, therefore the flow pattern begins to depend on the position around the valve periphery. As a result, the valve exit flow is almost along the elongation of intake port at the maximum lift, the corresponding in-cylinder flow behaves as a solid body of rotation. The motion of valve seems to have little effects on the valve exit flow pattern.
X